Restricted 132-Avoiding Permutations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted 132-avoiding permutations

We study generating functions for the number of permutations on n letters avoiding 132 and an arbitrary permutation τ on k letters, or containing τ exactly once. In several interesting cases the generating function depends only on k and is expressed via Chebyshev polynomials of the second kind. 2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70, 42C05

متن کامل

Restricted 132-Dumont permutations

A permutation π is said to be a Dumont permutation of the first kind if each even integer in π must be followed by a smaller integer, and each odd integer is either followed by a larger integer or is the last element of π (see, for example, www.theory.csc.uvic.ca/∼cos/inf/perm/Genocchi Info.html). In Duke Math. J. 41 (1974), 305–318, Dumont showed that certain classes of permutations on n lette...

متن کامل

Pattern Popularity in 132-Avoiding Permutations

The popularity of a pattern p is the total number of copies of p within all permutations of a set. We address popularity in the set of 132-avoidng permutations. Bóna showed that in this set, all other non-monotone length-3 patterns are equipopular, and proved equipopularity relations between some length-k patterns of a specific form. We prove equipopularity relations between general length-k pa...

متن کامل

Equipopularity Classes of 132-Avoiding Permutations

The popularity of a pattern p in a set of permutations is the sum of the number of copies of p in each permutation of the set. We study pattern popularity in the set of 132-avoiding permutations. Two patterns are equipopular if, for all n, they have the same popularity in the set of length-n 132-avoiding permutations. There is a well-known bijection between 132-avoiding permutations and binary ...

متن کامل

On the diagram of 132-avoiding permutations

The diagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram of a partition. Based on this fact, we present a new bijection between 132-avoiding and 321-avoiding permutations. We will show that this bijection translates the correspondences between these permutations and Dyck paths given by Krattenthaler and by Billey-Jockusch-Stanley, respectively, to each oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2001

ISSN: 0196-8858

DOI: 10.1006/aama.2000.0719